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Abstract

In the first part of this contribution we show that the master equation derived from the

generalized version of the nonlinear Doebner-Goldin equation leads to the squeezing of one

of the quadratures. In the second part we consider two familiar Hamiltonians, the Bate-

man - Caldirola - Kanai and the optical parametric oscillator; going bazk to their classical

Lagrangian form we introduce a stochastic force and a dissipative factor. From this new

Lagrangian we obtain a modified Hamiltonian that treats adequately the simultaneous am-

plification and dissipation phenomena, presenting squeezing, too.

1 The nonlinear master equation

Our search for a new class of equations was inspired by the model proposed recently by Doebner

and Goldin [1]. They looked for the most general Schr6dinger equation compatible with the

Fokker-Planck equation for the probability density p(x, t) = I¢(x, t) 12,

pt + V.j = DV2p (1)

(where D is a constant positive diffusion coefficient), and derived the nonlinear equation

ihO_h(x, t)/Ot = [-(h2/2m)V 2+ V(x)]¢(x,t)

+ ihD[V2+ iV¢(x,t)[2]I¢(x,t)12 _(x, t) (2)

for a particle with mass rn moving in a scalar potential V(x). The advantage of eq. (2), com-

paratively to other ones [2], is its group theoretical origin, the nonlinear term was not simply

added to the usual Schr6dinger equation ad h.oc, but its structure was derived from the analysis

of representations of the Diff(R 3) group, proposed as a "universal quantum kinematical group"

[1]. The only drawback of eq. (2) is its limited range of applicability, since it can be used only in
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the coordinate representation. It is desirable to have a more general equation valid in arbitrary

representations. To obtain such a generalization (heuristically), first, we remove the Cartesian

coordinates dependence, introducing an arbitrary set of states [ z), which form a complete system

with respect to some measure d#(z), i.e.,

f I z)(z I d_(z) = i. (z)

Secondly, we replace the two V - operators in the additional term of eq. (2) by two arbitrary

(linear) operators A and /_. By this way we arrive at the equation, whose nonlinear part, in

general, is neither Hermitian, nor anti-Hermitian,

° [ ]th-_(zl¢) = (zl[/l¢)+ihD (zl¢) (_l[31z)(zlAl¢)-(zlBAl¢) • (4)
(_ I z)(z I ¢)

Multiplying both sides of this equation by (_b [ z) and integrating over d_(z) with account of (3),

one can check that the normalization of the wave function is preserved in time since

f<¢ I z)(z I _{¢}) d#(z) = o, (5)

where (z [ f_{¢}) is the non-Hamiltonian term in the right-hand side of eq. (4). Evidently, the new

equation satisfies the homogeneity condition. Moreover, the "separability property" also holds:

the wave function of noninteractlng particles is factorized for all times, if it was factorized at the

initial moment. Nonetheless, the form (4) is not/he most general, in [3] we showed that the more

general form for f_{_b} is

Q{I ¢)} = ihD[(_b I/_ [ z)<z I A 1¢) (_ I/_A ]z) ](¢lz>(z I_> - r (Wlz> - _9A1¢> , (6)

where )_ and r may be arbitrary complex numbers satisfying the restriction _ + r = 1. In papers

[4, 5] we investigated eq. (4) with /3 = 4 + , A, /3 being lowering and rising operators for the

two-level system and for the harmonic oscillator. It was demonstrated that this equation, written

in the discrete energy (Fock) basis I n), describes the relaxation to "pseudothermal" stationary

states, possessing the Planck distribution for the populations of energy levels, but nonzero off-

diagonal elements of the density matrix. This is not surprising, since eq. (4) relates to pure

quantum states. However, it is more natural to describe relaxation processes in terms of density

matrices, in order to investigate the evolution of mixed quantum states. Therefore, our next goal

is to obtain nonlinear master equations originating from eq. (6) and its special cases.

Starting from equation (6) and considering the evolution of the pure state density matrix

(z I PC I z') = (z I V)(¢ I z') governed by this equation and replacing I _b)(¢ ] by _ we obtain

^

zl<z
(z'l_BAIz)

r

(z'l_lz)

<z'lB + b A+ I z'>
+

(z'l_l z'>

_ r.(z' I A+/_+ blz)_ <zI bl z')
(z'l_lz> J

<zl[r, tz'l,- D_(zlBA_Iz')- D,_'(zli, A+[3+lz') - -_

which preserves the trace, normalization and hermiticity for an arbitrary initial density matrix.
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2 Application: The harmonic oscillator in the coordinate

representation

This section is devoted to investigating a special case of the general equation derived in Sect. 1.

We shall limit ourselves to one dimension, identifying the ket-vector ] z) =[ x) and apply the new
equation to the harmonic oscillator Hamiltonian

h 2 05 m w2x_ _ fx ,E/= -2--_ ox---_+ 7 (8)

we choose operators /] and /) as /i /)+ 0= = o-7 + sx, where s, D,r, A, are assumed to be real

constants. Now, designating the elements of the density matrix in the coordinate representation

as p(x,y) = p*(y,x) and introducing the notation

i (xf ly)x{e} - h
ih i

- 2m (pxx(x,y) - puu(x,y)) - -£(V(x) - V(y)) , (9)

Op Op 02p

Px = Ox' p_ = -O-yy' p=: - Ox_'"" (10)

we can write eq. (7) as

0p(x,u) f p._(x,x) + s/[p.(_,_) + p_(x,_)]
Ot - 7-/{p} + D [ p(x,z)

+ P_(Y'Y) + sy[px(y,_) + p_(y,y)]
p(y, y) + 2s

p;_(x,u) + p;_(_,u)}+ r p*(x,y) p(x,y) + AD [p_(x,y) + puu(x,y)]. (11)

All derivatives in this equation must be calculated for the independent variables x and y, and only

after that one should consider x = y in the functions p_,pu, and Pxu-

For the probability density P(x) =_ p(x,x) eq. (11) results in the following Fokker-Planck
equation

OP OJ { 02P O }0-'_ + Ox - D _ + 2S -_x (xP) , (12)

where J(x) - _m'_[p_(x,x) - py(x,x)] is the current density, 2sDx is the drift velocity, and

D is the diffusion coefficient. Eq. (12) clearly shows that the total probability is conserved in

time. Eq. (11) admits a special class of solutions in the form of Gaussian exponentials,

[ 1 ]p(x,y) = exp -_ax _ + cxy- -_a'y2+ bx + b'y + ¢p , (13)

with c and ¢ being real functions of time, while a and b may be, in general, complex. Putting

expression (13) into eq. (ll) we get the equations for the coefficients a(t) and c(t), which do not
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contain neither the force f(t), nor the function b(t). Therefore, let us assume, for simplicity, that

f = b = 0. Then, instead of eq. (11) we have the following set of ordinary differential equations

for the real functions a = Rea,/3 = Ima, c, and q_,

m

h
moil + --(c 2 - a 2 + 8 2) + 4_Da8m

h
= 2--8c- 4Dac ,

m

= h 8 + 2D(c-a + s)
l'n

{C_C C 2 Ol 22- 8 + 4D - - + - (14)

(15)

(16)

(17)

Here the parameter _ = r - A is introduced .

The trace of the Gaussian density matrix equals

[ 7r ] 1/2Tr[_ = e_
tot -- CJ

(18)

consequently, the condition of its conservation is the equation

(_ 1 & - b _ 0 , (19)
20t -- C

and it is easy to check that this equation is fulfilled. The difficulty of treating the equations for

the coefficients a, fl, c is connected with their nonlinearity even in the absence of nonlinear terms

in the master equations (i.e., when D = 0). It is well known, however, that in the latter case the

equations of motion for average values and the second order moments are linear for any quantum

system with quadratic Hamiltonian. Therefore we replace the equations for coefficients a, 8, c, by

the equivalent equations for the variances

a** = (3c2) - (3c)2 , crpp = ([_2) _ ([_)2, a.p = -_(xp+ [_3:) - (k)(/_), (20)

these quantities are related to the coefficients of the Gaussian density matrix (13) by

1
O'xx --

- '

a_:p = -h8a_:_ = - 2(a - c) '

h2 2 h2 as 85 c2
app - 2 (_ + c) + a_---2-p= + -

axx 2 a - c

(.21)

(22)

(23)

Another quantity characterizing the quantum state is

A 4 a+c

Ol -- C
(24)
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Its importance is explained by two factors. First, any quantum state must satisfy the generalized

Robertson - Schr6dinger uncertainty relation [6] A > 1. Second, any positively definite density

operator must satisfy the inequality

Tr(t 2) < 1 , (25)
-

but for any Gaussian state [7]

Tr(p2) = A -'/2 (26)
[Tr(t3)] 2

Consequently, the parameter A characterizes the "degree of coherence" of the Gaussian state:

A -- 1 for pure states, and A > 1 for mixed states.

The relations inverse to eqs. (21)-(23) read

I+A A - 1
Ol _ _ , C- _ 3 _ O'xp ,

4azx 4axx haxx

so one can check that eqs. (14) - (16) result in the following equations for the variances,

(27)

2
&_, = -- a_v - 4Ds a** + 2D ,

m

1 _ w2&,:v = --avv ma,_- 4D,sa,:v + D a_v [2 + _¢(1 + A)],
axx

&vv = -2ufima- v + D._.__s(h 2 _ 4a_v )
O'a: x

+ -25-2D a_,2 [1 + {(I+A)] - _[1 + A s] .
O'xx

(28)

(29)

(30)

As a consequence, the equation for the parameter A is

A-I]£x = -D(A-1) 4s + (31)
O'xx

We perceive that A is conserved in time if D = 0. Alternatively, if D # 0, then A tends to

the unit value at t _ oo, provided both coefficients, D and s, are positive. This means that any

initial state exhibits the relaxation to a pure state!

The advantage of the equations for the variances is clear: The nonlinear terms are multiplied

by the diffusion coefficients, which are small in all reasonable situations. Therefore we may use

the solutions corresponding to D = 0 as the zero approximation, and develop some perturbative
scheme.

If D = O, getting rid of cr,_v and avv, one arrives at a single third-order equation for the

coordinate variance,

da o'zx da,_z

dt 3 + 4w2 dt - 0 , (32)

whose solution reads

a_,:(t) = A + B e2i_ + B* e -2i'a (33)
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where A and B are constant coefficient. It is natural to suppose that for D _ 0 the evolution of

(r_= is given by the same expression, but with the slowly varying in time coefficients:

a**(t) = A(t) + B+(t) , (34)

where

B+(t) = B(t) ezi_t + B'(t) e -zi_' (35)

Now inserting (33) into eq. (28) and neglecting terms of the order of 0(0 2) (guessing that the

n-th derivatives of A(t) and B(t) are proportional to D"), we can express the covariance axp as

follows,

a_p = iw m B_ + -_ + + 2mDs (A + B+ ) - roD, (36)

and with the same accuracy we find the momentum variance for eq. (30):

o'pp = (wm)2(A - B+) + 8iwm2DsB_ + 2iwm 2 ([3

iwm 2D B_
[2 + _(l+&)]

A+ B+

e 2iwt _ [3* e -2iwt)

(37)

Since in this expression the function A is multiplied by the small parameter D, we must calculate

it in the zeroth approximation. Thus we get

A = (2hm)2 (A 2 -4 I B ]2) _ R 2 , (38)

being both, R and A, slowly varying functions of time.

Now, we make the crucial step first proposed in [8, 9]: we put the expression for app in terms

of A and B into eq. (30) and average both sides with respect to the fast oscillations of frequency

w. Then we arrive at the equation, which contains functions A and R only

([ (2) 1+_ ']Zt i, = 2rw -4a0s + _ - R + R 2R 3'

-i-(1 + R2)(2RS _)a0} , (39)

and where a0 = h/(2wm) is the coordinate variance in the oscillator ground state, while F = mD/h

is the dimensionless diffusion coefficient.

Now, averaging eq. (31) we arrive at a dosed equation for R(t),

Consequently, eq. (39) actually is the first order linear nonuniform equation with respect to

function A (t), which can be easily solved provided the solution to eq. (40) is known.

Thus, averaging the equations for the variances over the fast oscillations leads to the effective

linearization of the equation_ governing the evolution of the coefficients of the Gaussian density

matrix. To get the equation for B(t), one should first multiply both sides of the equation for @p,
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by exp(-2iwt), and then average over the fast oscillations. We confine ourselves, however, to the

evolution of functions A(t) and A(t) (the absolute value of B(t) can be extracted from eq. (38)).

It is worth to mention that A(t) is nothing but the energy of quantum fluctuations (up to the

constant factor and small corrections of the order of O(D)):

w 2 m 1

bE(t) - 2 a=: + -ff_mapp = w 2 rn A(t). (41)

Now if we consider a pure state, R = 1, then the solution for eq. (39) is

A(t) = ao + [A(0) - a0]exp[-4rw(2a0s - _)t] (42)

We see that the energy of fluctuations can increase or decrease, depending on the sign of the term

in the exponential:

1)If 2aoS - _ > 0, we verify that A(oc) = a0,6E(oe) = hw/2 and B(oc) = 0, therefore

asymptoticaly a,_ and o'pp do not oscillate.

2)If 2a0s -_ < 0 and since reasonably rw << 1, A(t) becomes a slowly increasing function with

time (the same for bE(t)). From eq. (38), asymtoticaly we have A(t) __ 2B(t) >> a0_. If B(t) is real

at t = 0 then it is real for any t > 0, so from eqs. (34) and (35) a_(t) = A(t) + 2B(t)cos(2a;t)

or A(t) - 2B(t) _< _r_ _< A(t) + 2B(t). But from eq. (38) A(t) - 2B(t) = a_/(A(t) + 2B(t)) ,,-

a_/(2m(t)). Therefore asymtoticaly a_ oscillates between two values,

a0
2A(t)

_< a_ < 2A(t) , (43)

thence, as time goes on the solution of the nonlinear SchrSdinger equation becomes highly squee-

zed. Note that a similar behavior of the variances (i.e., an exponential increase of the squeezing

coefficient) is observed in the case of the usual SchrSdinger equation for the parametrically excited

oscillator, when its frequency changes in time [7]. However, in the present case all the coefficients

in the generalized SchrSdinger equation with the functional (6) (or its master equation counterpart

eq.(7)) do not depend on time, and the increase of fluctuations is caused by the nonlinear terms.

3 Amplifying- Dissipative Hamiltonians

Here we shall consider the theory developed many years ago by P. Havas [10], which is quite

suited to construct Hamiltonians that take into account dissipation and apply it to two examples,

confining ourselves to the one-dimensional case.

3.1 The Bateman-Caldirola-Kanai (BCK) Hamiltonian

The harmonic oscilator with an exponential time-dependent mass re(t) = rno exp(_t), is known

as the BCK Hamiltonian [11] and we shall introduce the phenomenon of friction in it. According

to [10] when friction is present the Lagrangian that describes the motion, ( that reproduces the

classical equation of motion) is

L(q, il;t) = (lm(t) il2 - V(q;t) +qF(t))exp[7(t)] (44)
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Here V(q; t) = im(t)w01 2 q2 and F(t) is a time-dependent external force. The exponential factor

introduces the friction effects (also external) on the system and for the specific Lagrangian one

has

7(t) = _7°(1 - exp(-_t)) , (45)

as limt--._7(t) = "Yo/_ and lim¢..oT(t) = _'ot, so, recovering previous results [12]. We shall
consider Fit ) as being a stochastic force whose mean in an ensemble is null, (f(t)) = 0, and that

its correlation is Markovian, (f(t)F(t')) = 2db(t - t').

According to the quantization procedure of [12] one obtains the system Hamiltonian

p2
[-/(P,Q;t) = 2m----_exp(-_t)+ 1 2Z,2exp(_t ) 70_m0.;0_¢ +-_-{Q,P}exp(-_t) + QF(t)exp(7(t)/2) (46)

where/3 Q are canonicaly conjugated operators, [Q, Pl = in. The physical positionand momen-

tum operators are related to those through

qphv, = Qexp(-7(t)/2) , pphv, = Pexp(-7(t)/2) (47)

In order to obtain the equations of motion for the operators P and Q in the Heisenberg pic-

ture we first do an unitary transformation in Schr6dinger equation with operator S(_t/2) =

exp(-_ {Q,/5}), which leads to the new Hamiltonian

with

k(_,_;t)
1

¢r2 1 moWo2_:2 + (7oexp(-(t) + (){_:,¢r}
- 2too + _

+ _F(t)exp[l(7(t)- _t)]

0phu, = _:exp [- l(7(t) + (:t)]

_phy, = _'exp [- l('y(t) - Ct)]

The equations of motion for :_(t) and _(t) are solved assuming _H

leading to the set of linear differential equations

where flo2

(48)

(49)

= u(t)_o + v(t)Cfo + w(t),

d2Udt2 [gt_ + _exp(-2_t)] u = 0-_

d2Vdt2 [fig+-_exp(-2(t)]v = 0

_ - wo2 and with the following initial conditions
4

1

u(O) = 1 and /L(O) = _(_'o + _)

1
v(O) = 0 and /_(0)-

mo

w(0) = _(0) = 0

(50)

(51)

(52)

(53)

(54)

(55)
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The exact solutionsof the abovedifferential equationsare :

_(t)

v(t)

w(t)

3'o 3'0 K [ 3'o _ ] 3"o= [(__ _)_(_)+_ __,_jj,_(_ex_(-_))
_ [(__o _o _o _o _o2(½)I_(_) - _'_I._, (_)] K_ (_-_ exp(-(t)) (56)

1 f3'o_K (7°_I [7° exp(-(t))] (57)= mo--'-_[I_\2(] _(_-_exp(-(t)) - K_\_j _\_-(

-- rno(1 _' exp{ 1[3"(tl)__ _1_1]} [ Iv(_ exp(-(t))K,,(_exp(--(t,))3'° 3"0

- K_ (_-_ exp(-(t))I,,(_-_ exp(-(ta))] F(t,)dtl , (58)

where L(.) and K_(.) are the modified Bessel functions of the first and third kind, respectively

[13]. The parameter u is

ao if _>wo

u = 0 if _ = wo

z-_ if _<wo

(59)

Similarly the momentum operator in the Heisenberg picture is _rH(t) = l_(t)ko + fl(t)_ro + _(t),
where

.(t) = ,no

_(*) = mo

_(t) = mo

1

[/t(t)- _ [70 exp(-(t) + (] u(t)]

1

[_(t)- _ ['to exp(-(t)+ (]v(t)]

1

[@(t) - _ [3'0 exp(-(t) + (3 w(t)] (60)

Considering that the energy increasing prevails over energy dissipation, 3'0/( << 1, one has the

approximative solutions,

_.(t) ( ) (' )= cosh(S%t) + 3'0 + (sinh(_ot) _o + sinh(_ot) _o
2F_o

1 (_7__) /'rex /'-('1"_ sinh[flo(t - tl)] F(tl) dtl
mo_o exp Jo P _,'_"-J

#H(t) = [ m°w_ sinh(Ftot) + m°3"°(cosh(Ftot) ( sinh(_ot))]_oflo -_-- 2flo

+ (cosh(aot) (sinh(aot))_ro2flo

+

(61)

exp (-_)/o t [-(t"xexp_---f-] [2-_o sinh[_)o(t-tl)]- cosh[gto(t-t_)]]F(tl)dt_(62)

235



and the variancesfor qphu_ and ibvhu, become

lim<A2 ,.> exp[_ (_" _ 21lo)t] { 7° ( _169to _" 29t0
1) hwo__  oth( )

1)
+

(63)

1) oth/  oexp[(_ + 2f_0)t] {-_- + +169t--"_ \ 2-'_BT ]

exp (__) (_0 1)(1 + %-_)}---_ cx_ (_0 > 1)
(64)

verifying squeezing even in occurence of a weak dissipation.

3.2 The optical parametric oscillator (OPO)

Using the same method we can treat the 0P0 introducing in the Hamiltonian the dissipation of

the cavity, hence,

H(A +, A, t):= fx(t)A+A + {f2(t)(A+) 2 + f3(t)A + + h.c.} (65)

where the mathematical operators A + and A are related to the physical creation and destruction

operators by a = aexp(-Xt/2) and a + = a+exp(-Xt/2). Moreover, fl(t) = Wo is the

mode frequency in the cavity, f2 = x exp(-2iwt) + iA/4, where n and w are, respectively,

the intensity and the frequency of the pumping field, while A is the damping constant of the

cavity, f3(t) = F(t) ext/(2Wo) 1/2. The force F(t) is assumed to be a Markovian stochastic force:

< F(t) >= O, < F(t)F'(t') >=< F(t)'F(t') >= 2d_(t-t') and <F(t)F(t') >= 0, andthe

parameter d is related to the temperature of the cavity,

d - _wo2 coth(w2-_T) (66)

Considering the pumping at resonance, w0 = w, and for xX/wo << 1, the solution of Heisenberg

equations for operator AH(t) is

AH(t) = u(t)A(t) + v(t)A+(t) + w(t) (67)

where

u(t)

v(t)

w(t) = -cosh(7-2xt)[fo t

: e-"_°tcosh(2,ct) + [e -''°t (sinh27 cosh(2xt)-z sinhTcoshTsinh(2,ct)) -c.c.] (68)

= , sinh(2,ct) (cosh 2 7 e-'_°t - sinh2 7 e '_t) - z sinh(27) sinh(2,_t)cos(2wot) (69)

f3(t')exp[-uzo(t -- t')] dt' - c.c.] (70)

and tanh(27) = X/(2Wo).
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With the above solution we present the asymptotic (t --+ oo) mean values of several quantities,

after taking the average over the high frequency oscillations of the field (w0) and considering

4_/A < 1:

1)Energy,

lim (/_) = woe-'_(A+At¢),,,o _ _d 1
t-+oo A 1 - (41¢/A) 2

2)Variances of the two quadratures,

lim (AXa,2)t "-' d 1
t-_¢¢ 2Aw0 1 - (4x/A) 2

(71)

(72)

Although the asymptotic values of the variances of the quadratures are both above the value

1/2, at initial times squeeze is seen in the fast oscillations (before averaging over the mode fre-

quency). In eqs. (71) and (72) one verifies the effects of the dissipation-amplification process

through the quantity 4to/A:

i) If 4_/A << 1 (very weak pumping compared with the cavity dissipation), the thermalization,

represented by the parameter d, dominates in the physical expressions at equilibrium.

ii) On the other side, when 4a/A is close to 1 (strong pumping) the factor (1 - (4_/A)2) -1 dom-

inates the stre_ghts of the asymptotic values, increasing dramatically the energy and fluctuations,

as is expected to occur at resonance.

4 Summary

We have presented two different formulations of quantum dynamical equations that show squeezing

in the variances of the conjugate canonical operators. In the first one we considered a general-

ization of the Doebner-Goldin nonlinear extension of the SchrSdinger equation and we verified

that although the parameters that enter the nonlinear part of the equation are constant in time,

squeezing occurs, essentially due to the nonlinearity. Moreover, the master equation shows the

surprising feature that any initial mixed state relax to a pure state!

In the other approach we introduced the dissipation phenomenon into the Hamiltonian for-

malism by starting with a conveniently defined Lagrangian, as proposed by P. Havas [10]. We

considered two familiar time-dependent Hamiltonians, the BCK and the OPO. The BCK Hamilto-

nian has a time-dependent mass and it displays amplification of energy and squeezing of variance

of momentum or of position, although uncertainty is preserved. The dissipation was introduced

and the effects are seen in eqs. (63)-(64).

The second Hamiltonian is the OPO, describing a single mode in an electromagnetic cavity

with pumping at resonance. Dissipation is introduced to take into account the loss in the cavity

walls. As an expressive result we verify that the asymtotic physical expressions depend, essentially,

on the factor 4to/A, i¢ representing the pumping and A, the dissipation.
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